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Abstract 

Derived from the equations of motion, the bispectrum of power 

indicates the rate of energy transfer among components of the internal 

wave field.  This, or any other bispectrum, can be evaluated from weak 

resonant interaction theory given the wave spectrum.  Using the Garrett 

and Munk model of the deep open ocean internal wave spectrum, the 

bispectrum of power and the closely related auto-bispectrum of vertical 

displacements are evaluated numerically with the intention of providing 

an observational test of the weak interaction theory and its predictions. 

The resulting levels of the bispectra for typical deep ocean internal 

waves are generally too low to be observed with any statistical con- 

fidence in an experiment of reasonable length and cost. 



I.  Introduction 

As a first approximation, the oceanic internal wave field may 

be regarded as a superposition of independently propagating, dispersive, 

linear free waves.  The frequency is related to the wave number through 

a dispersion relation.  The statistics of such a field are Gaussian; 

all odd moments are zero (zero mean assumed) and all even moments may 

be expressed as products of second moments.  Hence the wave field may 

be completely described by its three dimensional energy spectrum. 

Under some further simplifying assumptions, Garrett and Munk 

(1972, 1975), henceforth GM, sought to construct a model spectrum 

consistent with the available observational evidence. Wunsch (1976) 

has found that this model describes the spectral shape and general 

energy level in much of the ocean; even in regions not far removed from 

various (suspected) sources of internal wave energy input.  This first 

approximation has proved to be both a useful and reliable description 

of the space and time scales of the internal wave field. 

However, the linear model cannot explain the apparently universal 

shape and level of the spectrum over a wide variety of input mechanisms. 

Nor can a linear field transfer energy from the (probably) large input 

scales (c.f. Müller 1977, Watson, West, and Cohen 1977, Bell 1977) to the 

dissipation occurring at small scales. Although the kinematics of the 

wave field are well described by the linear approximation, the dynamics 

are contained in the inherent nonlinearity of the motion. 



If the wave amplitude is sufficiently small, one may include the 

nonlinear dynamics, yet retain the kinematics of the linear approximation. 

The small wave amplitude is expanded in a perturbation series:  the 

first order corresponds to the linear approximation. At the next order, 

a linear equation for the second order motion is forced by products of 

two first order waves.  If the amplitude is small enough so that the 

energy transfer times are long compared to the period, only resonant 

waves interact significantly.  Because resonance requires the forced 

wave to obey the dispersion relation, the second order waves have 

precisely the same form as the first order waves.  The interaction may 

then be regarded as a slow transfer of energy among the first order 

"linear" wave components. 

McComas and Bretherton (1977), henceforth MB, used weak resonant 

interaction theory to investigate the transfer of energy with the GM 

model of the internal wave spectrum. They showed that three classes 

of interacting triads dominated the spectral energy transfers and appeared 

to explain several of the observed features of the universal spectral shape, 

McComas (1977) suggested that these particular mechanisms maintained 

that shape while transferring energy to small scale dissipation. 

Although these results are appealing and the predicted features are 

observed, there has been no direct test of this theory.  Furthermore, 

at small vertical scales  (M.0 m), the predicted energy transfers 

occur in the order of one period - violating the underlying assumption 

of the resonant approach.  Such waves seem to interact so strongly, that 



frequencies other than the resonant frequencies must be forced, and the 

wave field is more like turbulence than weakly interacting, nearly-linear 

waves.  As the accuracy of the resonant interaction approach for such 

strong interactions is unknown, it would be desirable to have direct 

observations of nonlinear interactions and spectral energy transfer 

to test the limits of the weak interaction concept and its predictions. 

As mentioned, a linear dispersive field had Gaussian statistics. 

In the presence of nonlinearities however, the waves are no longer 

independent and the statistics will not be Gaussian.  In particular, 

third order moments and their double Fourier transform, bispectra, will 

no longer be zero.  Hence these quantities serve as measures of the 

nonlinearity of the wave field. 

In contrast to the routine use of second order spectra, application 

of third (and higher) order spectra has been sporadic, confused, and 

difficult to interpret, even though the basic mathematical and computational 

foundation is replete (c.f. Hasselmann et dl.   1963, Haubrich 1965, 

Brilliger and Rosenblatt 1967, Hinich and Clay 1968). Most previous 

work (Huber et dl.   1971 on EEC's, Roden and Bendinger 1973 of various 

oceanic variables, Neshyba and Sobey 1975 on ocean internal waves, and 

many others) has been confined to producing frequency or one dimensional 

wave number bispectra of the record at hand. While this can indicate 

which frequencies or wave numbers are nonlinearly coupled, it is an 

overly restricted approach.  The full potential of bispectra, when 

combined with the equations of motion, is to provide a test of nonlinear 

dynamics and nonlinear interaction theories. 



This paper concerns the use of bispectra to investigate nonlinear 

internal wave dynamics in the ocean.  It has two main objectives:  1) to 

define and evaluate bispectra which can be used to directly observe the 

nonlinear coupling causing energy transfer within the internal wave 

spectrum, and 2) to use bispectra to test the adequacy of weak interaction 

theory as a description of that nonlinear coupling. 

Toward the first objective, we show that the time rate of change 

of the internal wave energy spectrum at a given wave number and/or 

frequency is given by an integral over a certain bispectrum.  This 

"bispectrum of power" gives the rate of energy input to a given wave 

component by nonlinear coupling of two other wave components.  If the 

required observational records can be obtained, the direct determination 

of the waves involved in spectral redistribution and an estimate of 

the energy transfer rate is possible.  For comparison with the observed 

bispectrum that might arise from such an observational program, we 

produce the bispectrum of power evaluated from weak resonant interaction 

theory.  This bispectrum shows strong interactions at the wave numbers 

and frequencies corresponding to the interaction mechanisms noted by 

MB.  If an observed power bispectrum shows similar peaks, it would 

provide solid confirmation of those theoretical mechanisms (objective 

2). 

Any bispectrum provides some measure of nonlinear coupling. 

Although the bispectrum of power is the best measure of nonlinear energy 

transfer, the required observational records will be difficult to obtain. 



Some more readily observed Lagrangian bispectra can be evaluated from 

weak interaction theory.  It results that the auto-bispectrum of vertical 

displacements of a fluid particle is a good test of the elastic scattering 

interaction mechanism (MB, McComas 1977) responsible for the equal 

intensities of up- and down-going waves (vertically symmetric spectra) 

often observed in the deep ocean. This bispectrum is also evaluated 

numerically. 

Unfortunately, the theoretical results indicate that bispectra 

are rather insensitive observational tests of the nonlinear interactions 

in the internal wave field in that their low levels require a large 

number of observations to attain statistical confidence.  Some speculation 

on why this is so is given.  The extremely low level of the frequency 

auto-bispectrum of vertical displacements is particularly surprising 

since Neshyba and Sobey (1975) have reported highly significant levels. 

It is suggested that their positive result is due to the method of 

sampling, not to strong interactions of the waves themselves. 

In the next section, some background on the definition, inter- 

pretation, interrelations, and display of various bispectra is given. 

In section 3 the important bispectrum of power is developed directly 

from the energy equation for internal waves.  Section 4 shows that this 

bispectrum or any other Lagrangian bispectrum can be evaluated using 

weak resonant interaction theory.  In section 5, the bispectrum of 



power and the auto-bispectrum of vertical displacement are evaluated 

using the result of section 4.  Some suggestions as to an observational 

program and a summary are contained in the final section. 

2.  Higher Order Spectra:  Backgound 

Higher order spectra, like their second order counterparts, are 

useful analytical tools.  It is the equations of motion and our knowledge 

of the phenomenon and its dynamics which leads to the proper use and 

interpretation of any spectral analysis.  This section is a brief 

background on the definition and interpretation of third order spectra. 



2.1 Definitions 

As third order spectra are in many ways similar to the familiar 

second order spectra, it is helpful to approach the higher order spectra 

by analogy. The cross-spectrum of two stationary homogeneous random 

functions u(x,t), v(x,t)  of position and time is defined as 

00     oo 

G  (k,w) = 
uv - 

(2TT) 

/  s  -ik'r-iüiTj j 
R  (r,x) e    drdx  , 
uv - _ 

—oo  —oo 

(2.1) 

where 

R  (r,i) = <u(x,t)v(x+r,t+t)> 
uv - 

(2.2) 

The bracket < > denotes ensemble means.  The cross-bispectrum of three 

stationary homogeneous random functions  u(x,t), v(x,t), w(x,t)  is 

B   (kI,ü>,,k",ü>") =  j 
uvw "    "       (2TT)

! 

OO     oo 

r 

— OO    —CO (2.3) 

, „, ,„ T..^-ik'-r,-i",T'-^"-S,,-iu,,T,,dr»dr"dT'dT" T   (r'.T'.r'-.T'^e -  - 
uvw - 

where 

T   (rt,T,,r,,,T") = <u(x,t)v(x+r',t+T')w(x+r",t+TM)>  .    (2.4) 
uvw - 



The inverse relations to (2.1) and (2.3) are 

00 oo 

R    (r,t)  = 
uv - 

G     (k,w)e  dkdtd 
uv - ~ 

—CO —00 

and 

T       (r',T\r",T") 
uvw - - 

oo CO 

r 
B      (k'X.k'W) uvw - 

,ik'.l'+io,'T'+ik».r"+ia,"T"dkldkIld(ü,du„ 

(2.5) 

(2.6) 

As noted by Hasselmann et at.   (1963) the interpretation of these cross- 

spectra is more readily apparent in terms of the components  dU(k,w)  of 

a Fourier-Stieltjes representation: 

u(x,t) = 
JTT,.  . ik'xfiwt 
dU(k,u))e ~ - (2.7) 

so that 

<dU(k\u)')dV(k",w")> = 

G  (k'.cj'Hk'du)'  if  co' = u>"   and   k* = k 
uv - 

(2.8) 

10 if not 



and 

<dU(k,ü))dV(kt,u,)dW(k",(ü")> = 

fB  (k',üj',k",a)")dk'daj'dk"du"  if  u'W'+in = 0 
uvw -    -     -    - 

and k'+k"+k =0 (2.9) 

) if not 

The cross-spectrum G   represents the contribution to <uv>  from the 
uv 

product of two Fourier components whose frequencies and wave numbers 

add to zero, whereas B    represents the contribution to <uvw>  from 
uvw 

the product of three Fourier components whose freqaencies and wave 

numbers add to zero.  (The latter condition is not the same as resonance, 

because the frequencies are not restricted to satisfy the dispersion 

relation.  Nonlinearities may force waves at frequencies other than the 

natural frequency for the resultant wave number, and (2.9) includes 

these forced, non-resonant waves.)  If the statistics are not homogeneous 

and/or stationary, this interpretation for the bispectrum is not valid. 

Those processes which are not homogeneous should use frequency decompositions 

at a point, and non-stationary processes should use wave number decompositions 

at an instant of time. 
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2.2 Symmetries: 

Under certain conditions third order correlations and their 

associated bispectra show certain symmetries similar to those of 

second order spectra.  If u(x,t), v(x,t), w(x,t)  are real, 

G  (k,co) = G* (-k,-a)) (2-10) 
uv -      uv - 

B   (k'X,k'>") = B*  (-k',-u,',-k'W)   . (2.11) 
uvw -    -       uvw -      - 

For stationary and homogeneous processes 

and 

R     (r,x)   = R     (-r,-t) (2.12) 
uv - vu    - 

Tuvw^,'T'^"'T")   =TUWV^"'
TM
^

,
'

T
'
) 

T       (-r',-T',r"-r,,T"-T') 
T711TJ — — —' VUW 

T       (r"-r,lT"-T')-r')-T') (2.13) 
vwu  -     - _ 

= T       (r'-r'V-T'Vr",-!") 
wvu -     - - 

= T       (-r",-T,\r'-r,,,T'-TM) 
wuv     - -     - 
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(The first relation in (2.13) is true without stationarity or homogeneity.) 

From these relations 

and 

G
UV

(^W) " Gvu(-^-w) (2'14) 

B   (k'V,k"V) = B   (k",u/',k\u)') 
uvw -    —        uwv -    - 

= B   (k,io,k' ,(!)') 
vuw -  - 

= B   (k'X,k,u)) (2.15) 
vwu -    — 

= B   (k,u),k*>") 
wvu -  - 

= B  (k",co"k,üj) 
wuv -   - 

where k = -k'-k" and to = -to -u 
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2.3 Display 

Because there are a large number of possible symmetries, a 

standard format for display, at least for third order spectra of one 

space dimension or time, will prove useful.  The following is not unique, 

but is relatively simple. 

The first task is to choose an order for the placement of the 

component records.  If all three records u,v,w  are different this is 

arbitrary.  Having chosen say uvw the frequency cross-bispectrum 

B  (to',to")  can be displayed in the 2-space (ID'.üJ") .   See Figure 1. 
uvw 

This bispectrum represents the product of Fourier components  to'  from 

record v ,  ai"  from w , and to = -to' -to"  from u . 

Because of the reality condition (2.11) there is a symmetry 

about the origin such that  B    (to' ,to")  is unique in any half plane 
° uvw 

of  (to',to") .  The half plane to' > 0 , octants 1, 2, 7, and 8 of 

Fig. 1 is a convenient choice.  The entire plane may be reconstructed 

by reflection through the origin. 

If any two records are the same, i.e.  u, v, u , placing the 

odd record first, so that the display frequencies to', to"  come from 

the same record, introduces the simple symmetry 

B   (to',to")  = B   (to",a)')  . (2.16) 
vuu vuu 

Thus, this spectrum is unique in the quarter plane 

to' ^ 0  ,  to' * L"| (2.17) 
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octants 1 and 8.  With this additional symmetry, the entire plane is 

obtained by reflecting the unique quarter plane about the folding axes 

of Fig. 1, as one would unfold a quartered piece of paper. 

If all three records are the same, i.e..  u, u, u the symmetry 

B  (üi'.u)") = B  Cu.u") (2-18) 
uuu uuuv 

implies uniqueness in octant 1 where to' > to" i 0 .  Unfortunately 

no simple folding symmetry is apparent and (2.18) must be used explicitly 

to obtain the quarter plane, from which the entire plane can be gained 

as before. 
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2.4 Eulerian versus Lagrangian Bispectra: 

Any flow field may be regarded as either a function of time 

and fixed position in space or as a function of time and the position 

of a particle.  The Eulerian and Lagrangian representations are completely 

equivalent descriptions of the field, and the choice of either system is 

a matter of convenience. 

Although at any one point at any given time, a Lagrangian or Eulerian 

variable must have precisely the same value, a time history of a Lagrangian 

variable is different from the time history of an Eulerian variable, as 

they are indeed records of quite different quantities.  This raises the 

question of what relationship, if any, Eulerian frequency spectra have to 

Lagrangian frequency spectra. 

An Eulerian variable,  QE(x,t), forever at position x can be 

related to the Lagrangian variable,  QL(x,t), whose initial position was 

x through the Lagrangian displacement _£L(x,t) by 

3Q.(x,t) 

QL(x,t) = Q£(x,t) - &L(x,t)]i—g^- + ••• (2.19) 

correct to second order (Phillips, 1966).  Clearly, second order time 

correlations of Lagrangian and Eulerian variables are equivalent to 

second order in the wave amplitude, i.e. 
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8QL <(W = <Q
L

Q
L

>
 - K\ *T± V 

(2.20) 

3QT 

-<QL\^>   + 

and if the wave motion is of small amplitude, or the statistics nearly 

Gaussian, the Eulerian and Lagrangian second order products and their 

related spectra are essentially interchangeable. 

Unfortunately, the same is not always true for third order 

time correlations and frequency bispectra, as 

9Q 

«VW " <QLQLV " ^L^ W 
(2.21) 

8QL 3QL 

■^ärV -
<
WL.^T

>
 

+ 
i i l i 

• • • 

Again, if the wave motion is of small amplitude, the two third order 

products are nearly equal - unless the statistics are Gaussian to 

first order.  In that case, the first order of the triple product 

disappears, making all the terms on the right hand side of (2.21) 

comparable in magnitude.  Hence, Lagrangian and Eulerian triple 

products and their bispectra can be quite different. 
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2.5 Interrelationships: 

For a homogeneous and stationary field, 

CO 00 

B       (w'.w")  -   [•••[ B       (k,,k,,,ü)ffü>")   dk'dk" (2.22) 
uvw J        J      uvw ~ "     " 

-oo      —oo 

oo oo 

B        (k\k")   = uvw -     - 
■ f  B       (k,,k,\ü)l,wM)   du'du" (2-23) J     uvw -    - 

— oo       —oo 

00 00 

B        (k!, k")   =   I" uvw    12 ' 
["'     Buvw(k,,k",cü,Jw")   dk^dk'^ dk!{dk^da)1da)2        (2.24) 

-oo        —OO 

etcetera where k = (k^k^k ) .  Any bispectral density of some subset 

of arguments is an integral of the full bispectral density Buvw(k',k", 

üi'.tü")  over the remaining arguments. 

Because Lagrangian velocities are related to the associated 

Lagrangian displacements through the frequency, any Lagrangian frequency 

bispectrum involving velocities can be obtained from the displacement 

bispectrum and vice versa, for example 

B     (to',to") = iüi'Ciü/'Miü») Br    U\w
M)  . (2-25) 

u3u3u3 53C3?3 

This results because the vertical velocity, u3> is linearly related to 

the vertical displacement  ?3 , so that their Fourier transforms are simply 

related by the frequency, i.e., 
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dU3(u>) = im d53(üj)  • (2.26) 

The same degeneracy is not true of Eulerian bispectra because an Eulerian 

velocity is nonlinearly related to the displacements. 

An Eulerian or Lagrangian wave number bispectrum containing 

gradients can be related to the corresponding wave number bispectrum 

without gradients, e.g., 

B  dw0^'Wk;;Buw(k',k") (2.27) 

dx. 
J 

The only restriction is that the gradient must have the corresponding 

wave number as an argument of the bispectral density.  Clearly, 

frequency bispectra of gradients and wave number bispectra of 

velocities cannot be simply related to their respective displacement 

spectra. 
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2.6  Interpretation of Blspectra 

As second order spectra are harmonic analyses of second moments, 

third order spectra are harmonic analyses of third moments.  For stationary 

and homogeneous fields they each have the simple interpretations in 

(2.8) and (2.9).  However, bispectra, unlike second order spectra, are 

exactly zero at all wave numbers and/or frequencies.if the statistics 

are Gaussian (Haubrich 1965). When three wave numbers and/or frequencies 

are nonlinearly coupled, the bispectrum has non-zero values at those 

wave number and/or frequency points. 

What does a particular bispectral value mean?  Formally, it is 

the contribution from the region Ak'Ak" and/or Aw'Aw"  to that particular 

triple moment.  It identifies those waves which contribute most to that 

moment.  The significance of that moment must be obtained from the equations 

of motion.  Waves producing a large bispectral value for one triple 

moment may or may not have large bispectral values for another moment. 

In general, a given bispectral value may arise in two ways: 

either by weak coupling of highly "energetic" waves or by strong 

coupling of low intensity waves.  Therefore the bispectrum itself is 

not a good indicator of the degree of coupling. 
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2. 7 Bicohereq.ee 

It has been suggested that the "bicoherence" defined 

by 

C   (k*,u,,k",w";Ak,,Awl,Ak,,,Aü>") 5 
uvw  -     -      - 

IB  (k< ,k"X ,co")Ak.'Ak"Aw'AwM 
 ' uwv- '-          (2.28) 
IP (k,u))AkAüi P (k',0)') Ak'Aco' P (k",(ül,)Ak"Aü)I,|s5 
1 U —     —     V — —       W—       —     ' 

oo    oo 

where <uu> = ••  P (k,w)dkdü> (2.29) 
u - 

— OO   — 00 

is an appropriate measure of coupling strength (Hinich and Clay, 1968). 

It is zero when there is no coupling, but unfortunately it is not independent 

of bandwidth (c.f. Hasselmann et al.   1963).  However, for a fixed bandwidth 

in a given bispectrum of a single process, it should be a measure of the 

relative strength of coupling, e.g., waves 1, 2, and 3 are more strongly 

coupled than 4, 5 and 6 because 1, 2, and 3 has a larger bispectral 

value for the amount of energy contained in those three waves.  Computations 

from atmospheric and wind-tunnel data, although yielding greatly different 

bispectral levels, indicate a rather constant coupling coefficient 

(Heiland et al  1977A). 

The bicoherence C  does not integrate like the bispectrum does, 

i.e. 
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IB   (Cü'.CO'^AüJ'AU)" 
uvw ' C   (a)',a)";Aü)',Acü") H  - 

[P (a)')Acd' P (üO')Aü3
!
 P (u'^Acd"1"' 

(2.30) 

i     I  y C   (k',u)',k",w";Ak
,,Aa)*,Ak",Acü") 

k' k» UW 

Thus for internal gravity waves, whose frequency is independent of scale, 

strongly coupled small scale waves might not be detected by the bicoherence 

defined in (2.30), because the bispectral level of the small scale 

interaction would be normalized by the total energy in the frequency 

band, not just the much smaller energy of only the small scale waves. 

The same type of masking could occur for wave number bicoherences 

C(k',k";Ak',Ak"), which lump the less energetic high frequencies in with 

the low frequencies. 

In general, the interpretation of bicoherences of the form (2.30) 

must be made with care.  A low value indicates that the energetic scales 

are not coupled strongly, but says nothing about the coupling of the low 

energy scales. A high value indicates strong coupling within the band, 

but does not indicate which scales within the band produce that coupling. 

Because the variance of an observed bispectrum is proportional 

to the product of the power in each wave band (Rosenblatt and Van Ness 

1965), these bicoherences are useful in designing experiments.  From 

the theoretically determined bispectral level, the length of record 

required to reliably observe that level can be estimated from the 

bicoherence.  Because of possible masking difficulties, this is the 

only manner in which bicoherence will be used in this paper. 
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3.  Bispectra and Internal Wave Energy Dynamics 

We have seen that spectra show correlations between two frequencies 

and/or wave numbers, while bispectra show correlations between three 

frequencies and/or wave numbers.  Thus, auto-spectra of a stationary and 

homogeneous process would indicate that a frequency or wave number is 

correlated only with itself.  At this level, second order spectra would 

seem rather uninformative.  But, second order spectra also indicate the 

total variance within each band, and we often find certain combinations of 

spectra, such as energy, are dynamically revealing.  Similarly, third 

order spectra, while automatically yielding interesting information on 

the nature and strength of any nonlinear coupling, are also important 

in nonlinear dynamics and the redistribution (and dissipation) of energy. 

In this section, we will show that for stationary and homogeneous processes, 

integrals of particular bispectra give the time rate of change of the 

energy spectrum.  This interpretation is obtained directly from the energy 

equation.  The approach follows previous treatments of turbulence spectra 

(c.f. in Phillips 1966) and bispectral analysis (Lii et dl.,   1976, 

Hellund et dl.,   1977B). 

The equations of motion for an adiabatic, inviscid, incompressible, 

uniformly rotating, stratified, Boussinesq fluid are 

!!i + u !!i+g.  f .u+f--b6  =0 (3.1) 
9t   j 3x.    ijk jTc  3x±    i3 

ib+u 3b_._N2 (3.2) 
at  j ax     j j3 
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9u. 
_^L= 0 (3.3) 
9Xj 

P (x,t) = p + p"(x„) + p'(x,t) (3.4) 
'o   ' KV"3 

3p(x3)      /   p(x3) 
= -1+—±-    g (3.5) 

9x3       V    Po  / 

where u(x,t)  is the velocity perturbation,  f is the rotation vector, 

p(x,t)  is the reduced kinematic pressure,  b(x,t)  is the buoyancy 

perturbation, and N (x ), the Brunt-Väisälä frequency, is a function of 

vertical position only.  The basic state is at rest with the mean pressure, 

p(x„) , in hydrostatic balance. 

The energy equation for this motion 

|-E(x,t) +^-F.(x,t)  =  S(x,t) (3.6) 
at   —      ox.  j 

relates the time rate of change of total energy 

E(x,t) = h <u±u± + ^2 bb> (3-7) 
N 

a divergence of a flux 

F.(x,t) = <pu.> 
j -       2 

and an energy source term 

(3.8) 
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1,1, 3b (3.9) S(x,t)     =     <uiUj—+ -jbuJ —   > 

=     < u.u.e. .  + —7 bu.  -—   > S    1 2   ij       N
2       J   ^ 

/3u.        3u. \ 
where    e      = h I-r—^ + TT^- I     is  the rate of strain tensor.     For imcompressible ij      \zx.    ax.y 
flows, this energy source term is equivalent to a divergence of an energy 

flux, 

QT.(x.t) = <J*u.(uu. +±j bb)> (3.10) 

due to self advection. 

If the statistics are homogeneous, the time rate of change of 

energy at a point is exactly zero, as all fluxes are required to be 

independent of position.  No energy builds up at a point.  There may still 

be a linear or nonlinear flux in physical space, but that flux is non- 

divergent.  Similarly, the nonlinear source term may cause transfer 

between wave numbers, but when summed over all wave numbers, this transfer 

must be zero.  For oceanic internal waves, the assumption of homogeneity 

is valid only in the WKBJ limit of scales of motion small compared to the 

scale of background inhomogeneity, the vertical variation of the Brunt- 

Väisälä frequency. 

The question of stationarity is more difficult.  For linear 

processes, an initially non-Gaussian field tends rather rapidly to a 

Gaussian state (Hasselmann, 1967),  in which all third order moments, 
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correlations, and spectra are exactly zero.  With nonlinearities, third 

order moments, whose rate of growth depend on third and fourth order 

moments, arise - even from an initially Gaussian distribution.  For 

infinitely weak nonlinear interaction, where the only contributions come 

from resonant interactions, third order moments arising from an 

initially Gaussian distribution tend to a stationary value (section 4). 

However, stationarity is not possible when the nonlinear interactions 

are strong and the frequency interactions are promiscuous.  An assumption 

of a stationary bispectrum is equivalent to an assumption of weak 

nonlinearity. 

Bispectra of weakly nonlinear fields are more sensitive to 

intermittency (and possible stationarity) than are second order spectra. 

Bursts of nonlinear activity are just small perturbations to the other- 

wise constant second order spectra which are largely determined by 

the Gaussian linear field.  But, because the bispectrum reflects 

only the nonlinear activity - the Gaussian linear field not contributing 

to the bispectrum - fluctuations in nonlinear activity may cause 

major changes in the bispectral level.  The presence of the linear 

field also complicates the determination of the bispectrum, as the 

"signal" (the nonlinear coupling) must be extracted from the large 

"noise" of the linear field. 



25 

when using third order spectra, as in using second order spectra, the 

underlying assumptions of stationarity or homogeneity should be carefully 

examined. 

Granted stationarity on time scales the length of the record 

and homogeneity on space scales assumed small compared to the scale of 

variation of the Brunt-VMisälä frequency, then if 

.  .   ( ik-x+iwt    .       . 
u (x,t) = e  -    dU.(k,o)) 

b(x,t) eik-x+io)t dB(kjW) (3#11) 

.   .   I ik'x+iwt j-,,,  N p(x,t) = e - -    dP(k,üj)  , 

we obtain from (3.1) 

|- dU.(-k.-u) + £.0  f. dU (-k,-uO - ik.dP(-k,-ü)) - 6  dB(-k,-u) 
dt  j  —       j x,n JC  n j   —       j J   ■" 

00      00 

= - j•••j[ik^du£(k',u
,) duJ(k

,,,u") + ik^du£(k",w") diyk'.u')] 
00     oo 

ei(k'+k"+k).x + i(u/W+u,)t dk,dk„dü),dw„ m (3>12) 

Using a similar equation for buoyancy obtained from (3.2), multiplying 

each equation appropriately, and combining to obtain the time rate of 

change of the energy spectrum of a homogeneous and stationary process 

yields 



-^ E(k,u)) = 

00      00 

f 

—00   —00 
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(••• Re[s(k,,w,,k,',u")]6(k,+k,,+k)6(W
,+u)M+a)) dk'dk/'düü'dco"   (3.13) 

where 

E(k,u) - h  {dU.(k,w)dU,(-k,-w) + ^j dB(k,w)dB(-k,cü)} (3.14) 

is the energy spectrum and 

S(kltu
,,k,I,uM) dk'dk/'dw'dw" = 

*" äs<-ik'! {dUi(k,üi)dU. (k
1 ,<*>' )dU1(k",03") 

+ \r dB(k,w)dU.(k',u)')dB(k"X')$ 
N J 

-ik'.fdU, (k,ai)dU.(k,,,ü),,)dU, (k'.üj') 
j <■  i -    j -      1 - 

+ ij dB(k,a))dU.(k",u)")dB(k',u')]> 

if 

k'+k"+k = 0 

and 

ü)'+ü)"+U) = 0 

(3.15) 

if not 

is the bispectrum of power.  As in the energy equation (3.6), rotation 

has dropped out and for a homogeneous process the flux term 

/ iLE_ U > = ik. dP(k,u) dU.(-k.u) 
^ 3x. j      J   ~    J " 

(3.16) 
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is also zero, as continuity requires 

k. dU (k,u>) = 0  . (3.17) 

(The velocity and pressure gradient of any one component are always 

perpendicular.)  Thus, the real part of the bispectrum of power, 

S,  may be interpreted as the contribution to the rate of change 

of the energy spectrum at  (k,td)  by the nonlinear interaction of 

any two waves  (k*,u)')  and  (k",u)").  Under the assumptions of homo- 

geneity and stationarity, only those pairs of waves whose wave numbers 

and frequencies sum to the wave number and frequency of interest, i.e. 

(k,üü), make any contribution.  The total rate of change of the energy 

spectrum at a given wave number and/or frequency is the integral over 

all such pairs.  (The power bispectrum for internal waves is the same 

as for turbulence (Lii et dl  1976) except that the effects of buoyancy 

have been included and viscosity effects ignored.) 

Using continuity it may be shown from (3.13) and (3.15) that 

00 oo 

3     r,        f        f   3E(k,u)    ,,  , -ü_ £ =     ...     —N*-?   '   dkdto    = 
9t J        J        9t 

(3.18) 

Re  S[(k',üj',k",w")]   dkdu dk'du/   dk'W - 0 

—OO —^0 

00 oo 

r 

_oo —00 
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and the energy at a point is conserved, as we found before. 
A. 

As might have been guessed directly from (3.15),  S is the 

bispectrum of the nonlinear source term (3.9) and may be alternately 

defined from (2.3) using the correlation 

Su
i^E"»t+x") 

^NCrV'.rV") = -<ui(x,t)uj(xfr',t+T')  — 

+ ^b(x>t) u^.^V^f'^ > 
N        3 j 

Substitution into (3.13) results in 

(3.19) 

3E(k.M) 
3t     (2,)4 

J^(r,T,r,x)cos(k-r+ü3T) drdx  . (3.20) 

The time rate of change of the energy spectrum is given by the real 

part of the Fourier transform of the correlation N(r,x,r,x) .  This 

may also be derived directly from the energy equation (3.6).  Because 

the lags are identical the triple correlation oM can be considered a 
3ui 

double correlation between the records u±    and u ^x     •     The tlme rate 

of change of the energy spectrum may be evaluated either by (3.13) or 

(3.20).  The bispectrum S" provides more detailed information, giving 

the contribution from each set of components, not just the total as 

in (3.20). 
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The bispectrum S is composed of twelve separate terms.  For 

internal gravity waves, the scales of vertical and horizontal velocity 

W, U are related to vertical and horizontal space scales H, L by 

! - °(!) (3.21) 

The bulk of the internal wave energy is at low frequencies where H/L « 1 

Thus, the only terms that a priori might be neglected are 

— - mv — - „„ 3z - „, T 
W|W = m^   m   mK   m   0(*1)   o^M) 

leaving nine terms of equal magnitude to be evaluated.  But, even these 

three terms will be important for frequencies near the local Brunt-Väisälä 

frequency, where H/L is not small. 

To determine S using (3.13) requires records of velocity and 

buoyancy suitable for Fourier decomposition in three-dimensional wave 

number - even when frequency bispectra are to be computed.  If gradients 

of velocity and buoyancy can be measured, then S may be determined 

from (3.19). 

Because of limited measurement capabilities, particularly 

in the space domain, it is not likely that the full bispectral density 

S(k',k",tü',w")  can be obtained.  Rather some integral of the full 

bispectral density, such as S(k^,k^) where kß is a vertical wave 

number, or S(Cü',ü)")  might be obtained.  Even these will not be easy, 
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and a theoretical prediction of such bispectra greatly aides the 

experimental design as well as subsequent interpretation.  The 

evaluation of S(k'k") and 3(U)',üO")  from weak resonant interaction 

theory is given in the following sections. 

To summarize, we have noted that the time rate of change of 

energy at a point is balanced by the divergence of a flux and by a 

nonlinear energy source term.  If the process is homogeneous, the energy 

at a point is constant.  (Viscuous and other dissipation has been ignored.) 

However, energy may still be transferred within the spectrum. The rate 

of change of the energy spectrum of a homogeneous and stationary process 

is the Fourier transform of a third order correlation, which is equivalent 

to an integral over the corresponding bisDectrum.  If appropriate records 

could be obtained, the rate of change of the energy spectrum due to 

nonlinear interaction with two other wave components could be directly 

observed through this bispectrum. 
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4.  Bispectra and Resonant Interaction 

If internal waves are indeed a weakly nonlinear process, the field 

may be regarded as a superposition of independently propagating random 

waves governed by a linear equation of motion. Frequencies are related 

to the wave number by a dispersion relation.  This base state has 

Gaussian statistics and hence is fully described by its constant three- 

dimensional energy spectrum, E(k) . Any bispectrum is exactly zero. 

At the next order, motion will be forced by interaction of 

two waves of the first order field at sum and difference wave numbers 

and frequencies.  A resonance occurs for forced waves of the natural 

frequency; i.e. those frequencies satisfying the dispersion relation 

for the forced wave number.  Asymptotically, the only significant energy 

transfer occurs between resonant waves (Phillips 1960). 

Such nonlinear coupling should be reflected in bispectra. The 

objective of this section is to show that weak nonlinear interaction 

of an initially Gaussian, homogeneous field produces a stationary, non- 

zero, third order product of Fourier components from which any desired 

Lagrangian third order correlation or bispectrum may be produced.  In 

the next section, the bispectrum of power and the closely related, but 

more readily observed, auto-bispectrum of vertical displacements are 

evaluated. 
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4.1 The Linear Field 

As previously noted, the internal wave field can be considered, 

to a first approximation, as a superposition of independently propagating 

linear waves. The field may then be described by the Lagrangian displace- 

ments (Olbers 1976 and McComas 1975) 

v  v s„ N as i(k'x-sfHk)t) 
C,(x.O - I       I  a (k) G e -- 
3      s=±l k      -1 

(4.1) 

-j 

with wave amplitudes aS(k) where the wave number k 

has a magnitude |k|  and horizontal wave number 

2   2 %i 

(k.,k„|K,/ 

(4.2) 

and 

n(k) 

r..2 2 , .2, 21 rN K + f k. 
(4.3) 

k3/.k ."V 
2 \  1   su 

ifk. 
C < -4 (-*•> + -~ 2 \ 2   su ; 

(4.4) 

are the dispersion relation and displacement vector, respectively; C 

is a complex constant and f is the vertical component of Earth's 

rotation.  Reality of 5.(x,t)  implies 

'(k) = (a"S(-k))' (4.5) 
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where * denotes complex conjugate.  For this Gaussian field the 

statistics are completely described by the power spectrum 

E(k) - 2p y,   I      aS(k) a~S(-k) (4.6) 
° -s-±l 

where 

Yk = CC* (N2-f2) -f— ■ (4.7) 
- W -f 

So far even this simple description of the internal wave field has not 

been obtained, as only models of the fully three-dimensional spectrum 

E(k)  are presently available. 
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4.2 Nonlinear resonant interaction 

To consider weak nonlinearities, the Lagrangian displacement 

field is given by 

-s „i(k*x-s£3(k)t) (4.8) 
r (x,t) = I      I  as(k,t) G* e 
1 s=±l k ~j 

where the wave amplitude a(k,t)  is now a function of time. Expanding 

a(k,t)  in a perturbation series, with e a formal parameter expressing 

the weakness of the field, 

aS(k,t) = eaj(k.t) + e^Ck.t) + A^(k,t) + ... (4.9) 

with initial conditions 

a!(k,0) = aS„(k,0) = ... = 0    . (4.10) 

At lowest order 

aj(k,t) = aj(k,0) «-1» 

a constant amplitude corresponding to the linear solution (4.1) to 

(4.5). 
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Following Hasselmann (1966), the second order amplitude is 

•;(k.t)-X I l    l    -7f^Dk'k"-k af(k/,t)af(k^t)6(k>k"-k) 
2       s' s" k' k"  *PoYk  - - -  X       L 

ifsSK^-s'ftCk'WftCk")^  n 
i x    Z  ~ l 

sfi(k)-s'n(k,)-s*,fi(kM) 

(4.12) 

where 

~     i  ~ 3 

2 2   3 
and    TT = -iC (N -f ) —~z 

k 

(4.13) 

(4.14) 

(McComas 1975). 

Consider the third order cross-correlation of any variables 

u, v, w for a homogeneous process 



J6 

<u(x,t)v(xfrl,t+T,)w(3d-r",t+T,,)> = 

J n M I KK^C  <aS(k,t)aS,(k',t+T')aS"(k",t+i")> 
k k' k» s s» s"^k * 

ik'-r,+ik"-'r"-is,fi(k,)T,-is"fi(kM)T" 

6(k+k'+k")e ~ 

-i[sfi(k)+s'^(k,)+s"fi(kn)] t (4-15) 
e —     ~ 

The Fourier component uf can be found in terms of G,  for whatever 
is ->» 

Lagrangian variable u(x,t)  represents.  For example, if w(x,t)  represents 

vertical velocity u3(x,t), then W^ = isfi(k)(G^J      since u3(x,t) = 

— £   (x.t) .  Equation (4.15) is the discreet equivalent to (2.6), so 
3t ^3 -' 

that the discreet bispectrum of u, v, w is given by 

B  (k,,u',k",to,,;t) 
uvw - 

KK'<K"    <aS(^'t>aS (k',t+x')aS (k",t+T")> 

6(k+k'+k") e-i[8n(k)'+8
,n(k,)+s"n(k,,)]t (416) 

with 

»• = -s'nCk'),       a)" = -s"n(t")  • 
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At this point, no assumption of stationarity has been made.  Introducing 

(4.9)  into the ensemble average triple product of the wave amplitudes 

in (4.16) yields 

<a°(k,t)a° (k',t+x')aS (k",t+T")> = 

e3 <a*(k,0)af (k* ,0)af(k",0)> 
1 ~   1 ■"    l 

+ e4 <a^(k,t)af (k',0)af (k",0)> 
I "- 1 ~ l — 

+ e4 <a^(k,0)a2,(k',t+T')aS1"(k",0)> 

+ e4 <a^(k,0)a^(k',0)a2,(kM,t+T»I)> 

+ ... (4.17) 

The first term is zero because the first order field is Gaussian. 

The next set of terms will not be zero however, as the second order 

amplitudes depend on products of first order amplitudes so that these 

terms are averages of fourth order products of the first order field. 

To this point the development of theoretical bispectra has 

followed that in Hasselmann et al.    (1963) (with the exception of the 

Lagrangian representation).  However, Hasselmann a priori assumed that 

the third order statistics that arise due to nonlinear interaction of 

an initially Gaussian field will be stationary.  This is in general not 

true.  Bispectra of strongly interacting phenomenon such as turbulence, 

arising from an initially Gaussian state, (This does not preclude 

stationarity for strongly interacting phenomena:  It does indicate 

that the assumptions of strict stationarity and "quasi-Gaussianity" 

are incompatible for such motions.) will not be stationary.  Clearly 
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the degree of stationarity will depend upon the weakness of the non- 

linearity.  For ocean waves, which do not admit quadratic resonant 

interactions, strict stationarity is not possible. 

For internal waves, which do admit quadratic resonant interactions, 

the statistics asymptotically reach stationary values as it can be shown 

that in the limit of infinitely weak interactions (4.17) becomes 

limit  <as(k,t)aS'(k,,t+T,)aS' (k",t+T")> 

, -iimft)nft')flft") D-f ;-j»;;-f 5(k+k'+k") 
8 VkW     -* k "fe  

6(sfi(k)+s'n(k')+s"r2(k")) 

(sA(k,)A(k;,)+8,,A(k,)A(k)+s,A(k,,)A(k)] (4.18) 

where A(k) = E(k)/fi(k)  is the wave action spectrum.   Substituting (4.18) 

into (4.16) gives the weak interaction formula for the stationary bispectrum 

of anv Lagrangian variables u, v, w 

B  (k,,u,,k,,,a)")  = 
uvw - 

"  8pAYt,V.    D-k'-k"-lc UkV V 
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6(k+k,+k")6(sfi(k)+s'ft(k')+s"fi(k")) 

fsÄ(k' jAck'^+s'^ck- )Ä(k)+s »Ä(k") A(k); (4.19) 

Thus the bispectrum of <uvw> is given by an interaction coefficient 

times second order products of the action density spectrum.  The 

advantage of the Lagraneian description and the use of the action 

density is that the coefficient is the same for each of the three 

spectral product terms.  Eulerian bispectra can be generated from 

the Eulerian equations of motion, but with considerably more effort 

and with less appealing results. 

Hasselmann (1966) showed that further consideration of the 

amplitude expansion (4.9) leads to an expression for the time rate 

of change of the action spectrum, i.e., 

3Ä(k) = y y y y irsn(k)n(k')n(k") 

k' k" s1 s 

D 
-s'-s'^s 
'-k'-k"-k 

6(k+k'+k")6(sn(k)+s,fi(k,)+s"£Hk")) 

fsA(k' )Ä(k")+s,,Ä(k, )A(k)+s' A(k")A(k) j (4.20) 

Note the remarkable similarity between (4.20) and (4.19).  The only 

significant difference is the interaction coefficient. Where (4.20) 
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has 
-s -s -s sITs „s , (4.i9) has DIJ;,^.,;; v~,wk„ This near 
-k'-k"-k 

equivalence will be exploited later. 

The rate of change of the action spectrum is simply related to 

the rate of change of the energy spectrum by 

3E(k) _ nfkv 9A(k) 
3t  "  -  at 

(4.21) 

so that the integrand of (4.20) times n(k) gives the rate of change of 

the energy spectrum at wave number k and frequency ft(k)  by inter- 

action of two waves k*, s'n(k) and k", s"n(k").  Only those waves 

whose wave numbers and frequencies sum to zero make any contribution. 

This is precisely the definition of the bispectrum of power of section 3. 

Hence (or it can be shown rigorously) the bispectrum of power arising 

fro« weak interaction is given by 

Re [S(k,,8,8(k,),k,l,s,,8(k"))] = 

7rsn(k)fl(k')SUk,") 
fi(k) 8VkW -k'-k"-k 

6(k+k'+k") 

<5(sn(k)+s'.fi(k')+s"n(k")) 

(4.22) 

fsÄ(k')Ä(k;,)+s"Ä(k')Ä(k)+s,Ä(k")Ä(k); 
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Given some wave action spectrum, such as provided by the 

GM models, the bispectrum of power or any Lagrangian bispectrum 

can be numerically evaluated using (4.22) or (4.19) respectively. 

Comparison of the predicted bispectra to the observed bispectra is 

a test of the adequacy of weak interaction theory.  Production of such 

theoretical bispectra is the objective of the next section. 

V.  Evaluating Theoretical Bispectra 

The previous section gave the expression for bispectra of a 

weakly interacting random internal wave field.  In this section the 

bispectrum of power and the auto-bispectrum of Lagrangian vertical 

displacements will be evaluated numerically for the GM model of the 

internal wave spectrum. 



42 

5.1 Frequency Bispectra 

5.1.1 The Bispectrum of Power 

The full bispectra! density S(k',s',ft(k'),k",s"fi(k"))  is given 

by (4.22).  As the frequency tu' = s'ft(k')  is a function of the wave 

number alone, the bispectrum of power is a function of the six components 

of k', k" .  Due to the delta function in frequency, only those waves 

which satisfy the frequency resonance conditions have a non-zero density. 

Thus, the bispectral density can be reduced to a function of five arguments, 

without loss of generality. 

At this point the theoretical bispectrum is fairly simple to 

evaluate, as only one triad contributes to each point in the 5-dimensional 

bispectral density.  However the task of observing such a bispectrum, 

which would require records in time and two space dimensions, or all 

three space dimensions, seems quite hopeless.  If a comparison between 

theory and observation is to be made, the number of arguments must be 

reduced.  As bispectra of two arguments in one space dimension or time 

seems to be the most readily observed, only frequency or vertical wave 

number bispectra will be evaluated. 

The reduction of the theoretical bispectra from five arguments 

to two requires three integrations, a considerable task. As the GM 

model spectra are horizontally isotropic, an integration in horizontal 

direction is trivial, leaving only two integrations to be performed. 

The procedure is as follows:  the two arguments of the bispectral 

density are chosen, two values of the integration domain are selected, 

the integrand given by (4.24) is evaluated using the GM model for the 
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action spectrum, another point in the integration domain is selected, 

and so on.  Integration over all the computed values gives the hispectrum 

for that particular choice of the two arguments.  The procedure is repeated 

for another choice of the two arguments until the entire bispectrum is 

obtained. 

Figure 2 shows the result of such a computation - the frequency 

bispectrum of power.  Inspection of (3.15) shows that the bispectrum 

of power of two arguments can be displayed in a quarter plane with 

S(o)',w") = SCü/'X) (5.1) 

(Section 2.3).  The interactions of octant 1 can be thought of as a 

"sum" reaction, i.e. 

fi(k') + fi(k") = fi(k) (5.2) 

where fi(k)  interacts with two smaller frequencies ft(k')  and fi(k"). 

Octant 8 as a "difference" reaction 

n(k') - fi(kl') - fi(k) <5-3) 

where fi(k)  interacts with one larger frequency and a larger or smaller 

frequency.  A wave number bispectrum has the same magnitude relations 

for these octants, however, the designation as sum and difference reactions 

are not as useful because there is no convention for k > 0 like 

that for fi(k) * 0. 
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In Figure 2 the largest bispectral values are found at the very 

lowest frequencies.  The region is displayed in greater detail in 

Figure 3.  The large negative value in the upper left-hand region shows 

that energy is being transferred from the frequency band u) = 2f - 3f 

by interaction with nearly half frequency waves u1 = u" = If - 1.5f . 

As shown by the large positive values in the center of the plot, energy 

is also being gained at u - l.Of - 1.5f by interactions with nearly 

twice that frequency (u1) and nearly the same frequency (u").  The 

open regions have zero bispectral values because at least one of the 

frequencies is less than the local inertial frequency, and no interactions 

are possible. 

These large transfers out of the frequency band u = 2.Of - 3.Of 

and into CJ = l.Of - 1.5f , the inertial peak, have been identified as 

a parametric subharmonic instability by MB.  The waves involved in such 

a triad interaction are shown schematically in Figure 4(a).  MB also found 

that this interaction gave the strongest rate of change for the energy 

spectrum, rapidly transferring energy down scale and into near inertial 

waves. McComas (1977) has suggested that this is the most effective 

mechanism for delivering energy to the small scale dissipation region. 

It should be noted that agreement between these bispectral 

calculations and the results of MB is to be expected, as the bispectrum 

of power is merely another way of displaying the same quantity - the 

time rate of change of energy.  The primary objective is to provide a 

test of the theoretical predictions and proposed mechanisms.  Thus it is 

important to determine the bispectral signature of these mechanisms 

and the feasibility of an appropriate observational program. 
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The frequency bispectrum of power shows a ridge of high values along 

the oo'  axis for large values of to' . This corresponds to the induced 

diffusion interaction of MB, an interaction involving two nearly identical 

waves oj, oi'  interacting with a much lower frequency and much smaller 

wave number wave to" as in Fig. 4(b).  In such an interaction, wave 

action is diffused in wave number space.  Because of the particular 

shape of the internal wave spectrum represented by the GM models, the 

rate of change of action (or energy) of a given wave component o> is 

much smaller than if the spectrum had only a slightly different shape 

(McComas 1977).  This indicates some kind of interaction equilibrium 

in the internal wave field.  Such a balance is clearly shown in Fig. 2. 

The large negative value in octant 1 has a counterpart positive value in 

octant 8.  Figure 5 gives sections of the frequency bispectrum for various 

values of OJ .  The dominance of the induced diffusion interaction for 

the time rate of change of the energy spectrum at these frequencies is 

dramatic.  It is also quite apparent that the total result of the inter- 

action is much smaller because the contributions from the two octants 

nearly cancel. Any small change in the spectrum that disturbs that 

near balance would result in a large increase in the transfer rate. 

The positive and negative transfers in the two octants indicates 

a strong energy throughput to lower frequency. Recall that octant 1,   a 

''sum" interaction, involves interactions of üJ with two lower 

frequencies to1  and oo" .  The negative value in that region implies 

that energy is being lost from to to the nearby oo'  and much smaller 
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u" In the "difference" interaction octant, energy is being gained from 

interaction with slightly larger u'  and much smaller u" .  Since 

the induced diffusion interaction transfers energy primarily between 

the two high frequency components (MB), this result indicates a gain 

of energy at frequency to from slightly higher frequencies and a nearly 

equal loss to lower frequencies.  That amounts to a flow through u to 

—8   3 
lower frequencies.  Its magnitude ranges from approximately 2.5x10  J/m s 

at co = 20f to 2.5xl0~7 J/m3s at to = 60f , the same order as Müller 

and Olbers' (1975) estimate of the internal wave dissipation.  Furthermore, 

that throughput is nearly non-divergent so that the energy in to remains 

fairly constant.  This result is new, since the procedure of MB was 

unable to resolve the direction of the energy flow, and it nicely 

supports McComas1 (1977) assumption of a flux by this mechanism to a low 

frequency, high wave number dissipation.  As noted by MB such a flux 

implies a gain of energy at the low frequency component, and that gain 

is reflected in Fig. 2 for to small and to' £ -to"  large. 

The strong interactions identified by MB show highly individualistic 

signatures in the frequency bispectrum of power, and the foregoing types 

of arguments about energy flux and balances within the spectrum show 

that this bispectrum is a potentially powerful indicator of the 

nonlinear interaction and resulting energy transfer within the wave 

spectrum.  Obtaining such a bispectrum from observation would be 

extremely valuable. 

Unfortunately, bispectra are quite difficult to measure 

with any reasonable confidence unless the nonlinearities are quite 
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strong. For example, Lii et al   (1976) required nearly 10,000 estimated 

degrees of freedon, e.d.o.f., to obtain minimal confidence for wave 

number bispectra of wind tunnel turbulence, presumably a strongly non- 

linear phenomenon! As the features of interest for the internal wave 

bispectrum require frequency resolution of the order of the inertial 

frequency, i.e., a record length of at least one day, Lii's results 

suggest that an experiment of 10 days is required if the internal 

wave nonlinearities are as strong as wind tunnel turbulence!  Such an 

experiaent is of course impossible, but even if it were done, such strong 

nonlinearities would violate the basic assumption of statistical 

stationarity. 

The required number of e.d.o.f. for the 95% confidence level 

is (Haubrich 1965) 

= 4 [c|(u.',a»";Au)',Aü)")] <5"4) 

where O  is the bicoherence defined in (2.26) for the bispectrum of power. 

An order of magnitude estimate of the bicoherence can be obtained 

from 

2, .  .. A . A »^ ls(u)',a>")Au'Au 
O(u) ,w ;Aü) ,Aw ) * ~ 
S E(üJ)E(U)

,
)S(U") 

«A,.," |2 

(5.5) 

ECU1) S(0 



48 

where S % N2 is the total shear, S(w)  is the shear in frequency 

band Aw, TINT is the e-folding time scale for the energy in frequency 

band Aw by interaction with frequency bands Aw'  and Aw" , and TN 

is the Brunt-Väisälä period.  Taking the strong induced diffusion interaction 

with w' - 40f , w" = 1.5f, Aw = Aw' = Aw" = If, it results within an 

order of magnitude that 

0(v) * l^\ (5.6) 

such that for a ten day experiment,  TINT % 3 TN i.e. the e-folding 

time of the energy in frequency band Aw due to interaction only with 

frequency bands Aw'  and Aw" has to be the order of the Brunt-Väisälä 

period.  That implies extremely strong nonlinearities! 

The squared bicoherence, roughly the inverse of the number of 

degrees of freedom required to measure S(w',w"), for a band width of 

If has been computed using (5.5) and is given in Fig. 6.  Even the 

strong induced diffusion reaction would require one thousand e.d.o.f.I 

The strong nonlinearities required to produce an observable bispectrum 

with only a few degrees of freedom would probably preclude the required 

stationarity.  Although the frequency bispectrum of power would be 

extremely interesting and valuable, its determination from observation, 

at least open ocean observations, is impossible. 
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5.1.2  The Frequency Auto-bispectrum of Vertical Displacements 

The very low level of the frequency bispectrum of power may 

be peculiar to that particular bispectrum. Perhaps some other bispectrum, 

which clearly demonstrates the strong interaction mechanisms, would have 

an observable level. Neshyba and Sobey (1975) reported highly significant 

levels for frequency bispectra of vertical displacements, and they 

suggested that the interaction trapping mechanism of Phillips (1968) 

was responsible.  This mechanism, called elastic scattering by MB, 

reflects up-going waves into down-going waves, and vice versa and 

forces the spectrum into vertical symmetry in a time the order of one 

period and in a vertical distance the order of one wavelength (McComas 

1977).  A typical elastic scattering triad is shown in Figure 4(c). 

As this bispectrum promises to be a good measure of the elastic scattering 

mechanisms and observable levels have already been reported, this section 

evaluates the frequency auto-bispectrum of Lagrangian vertical displacements, 

Any bispectrum arising from weak nonlinear interactions may 

be evaluated from (4.19).  The auto-bispectrum of vertical displacements 

is easier than most as the Fourier component for vertical displacements 

has been chosen as unity, i.e. 

(Us (5.7) 
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Br      (k
,,8»fl(k,),k",B"fl(k"))   = 

RE !(k',s'n(kT),k",s"n(k")) 

s's"s 
-ifi(k)D°,°„k 

(5.8) 

The similarity of form between the auto-bispectrum of Lagrangian 

vertical displacements B       and the bispectrum of power S 
*3^3 

not only saves considerable effort in their evaluation, but also suggests 

that the much more readily observed vertical displacement bispectrum 

might be a good indicator of the strong energy transfer mechanisms. 

A detailed inspection of the form of B       reveals 
£3S3&3 

that this bispectrum is zero if the spectrum is vertically symmetric. 

This results because for every "up" triad there is a "down" triad 

that precisely cancels the "up" triad's bispectral value.  In a perfectly 

vertically symmetric spectrum, this bispectrum is everywhere zero. 

A significant non-zero level is therefore an indication of vertical 

asymmetry in the spectrum. 

McComas (1977) has shown that the elastic scattering 

mechanism eliminates a 10% perturbation to the vertical symmetry of 

the GM spectrum on the order of one period (at the shorter scales) - 

a very rapid relaxation.  As a vertically symmetric spectrum has no 

vertical displacement bispectrum, some asymmetry is required and the 
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same 10% perturbation, namely 10% more energy in down-going waves and 

10% less in up-going waves than specified by the GM model, is used. 

Figure 7 shows the resulting frequency auto-bispectrum.  It is everywhere 

positive because the down-going waves have more energy.  Its shape is 

considerably more simple than the bispectrum of power.  The predominant 

feature is the ridge of high values for w" small.  This corresponds 

to the strong interaction of the elastic scattering mechanism. 

(Although the induced diffusion interaction has the same frequency 

characteristics, it does not appear in this bispectrum because of the 

near cancellation by "up" and "down" triads.)  A similar ridge was 

observed by Neshyba and Sobey (1975).  However, the level of their 

bispectrum was five orders of magnitude greater than here! 

Again one must ask if the predicted level is observable. 

Figure 8 shows that this bispectral level is hopelessly low, in 

apparent contradiction to Neshyba and Sobey's results.  The level 

is so low that it is not likely that the discrepancy can be due to 

differences in the basic spectrum, even though Neshyba and Sobey's 

arctic internal wave spectrum may have been substantially different 

from the deep, open ocean spectrum represented by the GM model. 

Rather it is due to the fact that these are not bispectra of the same 

quantities!  The theoretical prediction is for Lagrangian vertical 

displacements, but the observed bispectrum is taken from records 

of undulating step-like layers, and hence is neither an Eulerian or 

Lagrangian measurement.  It is approximately Eulerian in horizontal 
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position, but neither Lagrangian nor Eulerian in vertical position.  Their 

vertical displacement S3(x,2;t)  is related to the true Lagrangian vertical 

displacement . 53(X,Z;t)  by (2.19) so that 

<c3(x,z;t)c3(x»z;t)c3(x.z;t)>   = 

<£3(X,Z;t)£3(X,Z;tK3(X,Z;t)> 

Ho(X,Z;t) 
- <F   (X,Z;t) —±r  £„(X,Z;tK_(X,Z;t)> (5.9) 

X dX,       J J 

gr (X Z*t) 
- <? (X,Z;tK (X,Z;t)  ^    C3(X,Z;t)> 

i 

9? (X,Z;t) 
- <53(X,Z;t)53(X»Z;t)5i(X,Z;t)  ^  > 

+ 0<£5> 

i = 1,2 

As pointed out in section 2.4, fourth order terms are non-zero even 

when the Lagrangian field is Gaussian. 

The fourth order correlations in (5.9) can be considered as 

a third order correlation between SySy and 5± g^~ » a false 

signal which arises because horizontal gradients of £3 are 
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H3 
advected past the horizontally fixed sensor.  A large value of ^ g^~ 

might be expected from high frequency components of £3  (large 

horizontal wave number) and low frequency £. (large displacements). 

Such a signal would automatically be correlated with one high frequency 

£_ and one low frequency S« , producing a high bispectral value 

precisely where Neshyba and Sobey found their strongest results.  In 

the opinion of the author, their findings are a result of the kinematics 

of the sampling procedure -  not the dynamics of the nonlinear internal 

wave field. 
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5.2 Vertical Wave Number Bispectra 

The previous sections found two frequency bispectra which clearly 

reflected the energy transfer mechanisms of MB and would have provided 

observational tests of these mechanisms had their level been sufficient 

to be reliably determined by an observational experiment of reasonable 

length. MB found that small scale waves have much shorter e-folding 

times than large scale energy containing waves.  Although vertical wave 

number bispectra will combine all frequencies in one wave number band, 

just as the frequency bispectra included all wave number scales in one 

frequency band, the stronger nonlinearity of these small scale waves 

might produce an observable bispectral-level.  For example, consider 

the required e.d.o.f. for the induced diffusion interaction where 

k' % k  is large and k" is small.  From (5.5) 

much as before.  However, because k" is a small wave number it 

contributes only a small part of the shear - perhaps only one hundredth 

of the total shear - so that for v = 10 ,  TINT = 30 TN :  a ten times 

slower rate than required for observable frequency bispectra. 

If the statistics are stationary, an ensemble may be produced 

from vertical profiles taken at different locations and times (assuming 

homogeneity and stationarity), or from samples (at least a correlation 

time apart) of time histories of vertically separated instruments. 
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With the faster interaction times found by MB at the smaller scales, the 

vertical wave number bispectrum of power might have observable levels. 

Figure 9 shows the theoretical vertical wave number bispectrum 

of power.  Because of the large range of scales in the internal wave 

field, this bispectrum is best displayed on logarithmic axes.  In order 

to utilize the scaling of the resonance conditions that make 

the numerical computation of this bispectrum possible, the vertical 

axes is not k£ but ^3/^3! •  The unique quarter plane of the bispectrum 

of power now lies in -1 £ k^/|kj| < 1 .  On such an axis system, the 

third wave number is not constant along a line of -1 slope, as on the 

linear axes (Figure 1),  but, as before, may be determined from 

k + k' + k" = 0 . Finally, each bispectral value has been multiplied 

2 
by k'k"  so that the plotted bispectral value times the area  (20) 

3 3 3E(k3) 
d£og10|k!^k^ I d£og10|k^|  is the contribution to -^— dkß for that 

area.  Triads with waves of similar scale are found at the top of the 

plot (k"/|k'| ^ 1), triads with k^ large and k'3' small are in the center, 

and triads with k^ nearly -k^ and with k3 much smaller are at the bottom. 

Note that in this representation the bispectrum is remarkably 

constant, indicating that each logarithmic area transfers roughly 

comparable amounts of energy.  This of course implies that the large 

vertical wave numbers are more nonlinear since their energy content is 

much lower. 
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At least half the area of the plot corresponds to interaction 

of triads with widely separated scales (k3 ^ k3 ^ 10|k'3|) - the parametric 

subharmonic instability, and the induced diffusion interactions (Figure 

4a  and b ). MB showed that  |Tc^/k.^| = u'Vu'  for the induced diffusion 

triad, and as frequencies are bounded, the interaction is found only in 

a restricted range of .k'^/|k^| . The largest positive values in the 

upper region and the largest negative values in the lower region (both 

for k"/|k'| ^ 0.1)  are a result of the induced diffusion interaction. 

This is the opposite set of signs found for the frequency bispectrum 

(a throughput to smaller frequency), and using similar arguments, implies 

a throughput to larger vertical wave numbers.  The throughput is 

approximately independent of vertical wave number and is of the order 

of lxl0~10 Joules/m3s for a bandwidth of 1/20 of a decade.  This is 

a rather small throughput compared to the Müller-Olbers' dissipation 

estimate of 2 to 8xl0"7 J/m38 and seems to reflect the near balance of 

the GM76 model with respect to this mechanism. 

For smaller values of k'3/|k3|, there is a positive transfer 

due to the parametric subharmonic instability into the large vertical 

wave numbers k  and k3 out of k" . These transfers are smaller than 

the throughput by the induced diffusion triad, but this interaction is 

capable of transferring energy directly from the small wave number 

component to the large wave number components and is not the cascading 

process of the induced diffusion interaction.  Further, the plots 
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arbitrarily stop at |k"/k'| ^ 0.01, yet for smaller values this interaction 

is still contributing, and one may conclude that this mechanism is an 

important energy transfer mechanism. The loss from the small wave number 

component of both the induced diffusion interaction and the parametric 

instability (the major component) is found at k'^/jk^l ^ -1.0 . 

Finally we note that there is a ridge of interactions at 

k"/|k'| = -0.5 corresponding to the elastic scattering interaction. 

It does not stand out as a large transfer rate but only a change in 

sign of the transfer.  The transfer out of the low frequency, double 

wave number component is found at k"/|k^| ^1.0 and is much smaller 

as is appropriate for the much lower frequency wave (MB). 

Figure (10) shows the bicoherence of the vertical wave number 

bispectrum of power.  Clearly, this bispectrum is not readily observed 

either.  The strongest bispectral value is associated with the induced 

3 
diffusion interaction, requiring more than 10 e.d.o.f. Apparently the 

frequency masking within each waveband is more serious than implied by 

the simple order of magnitude estimate at the beginning of this section. 
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VI.  Summary and Remarks on an Observational Program 

Bispectra that directly indicate the energy transfer among 

components of the internal wave field may be derived from the equations 

of motion. The same bispectra can also be evaluated numerically from 

weak interaction theory, providing a possible test of that theory and 

its prediction of strong interaction mechanisms. However, the computations 

indicate that the level of these bispectra require extensive amounts of 

data to achieve statistical significance. 

The level of the frequency bispectrum and the long time required 

to obtain a degree of freedom (1 day) precludes the feasibility of any 

successful observational program.  Although the statistically significant 

result of Neshyba and Sobey (1975) seems to be explained as a result 

of nonhomogeneities of that particular wave field and the way in which 

it was sampled, a check on the "unobservable level" prediction for the 

frequency bispectrum of vertical displacement from a clean Lagrangian 

measurement in the typical open ocean conditions is recommended.  Hopefully, 

this will be available shortly (M. Briscoe, personal communication). 

The level of the vertical wave number bispectrum of power requires 

many degrees of freedom for statistical significance, and as one must 

wait at least a correlation time before the next sample, is probably no 

easier to observe than the frequency bispectrum.  In view of the probable 

expense and the limited chance for success, a program to obtain this 

bispectrum as a limited check of weak interaction theory is not recommended. 

In final summary, it seems that bispectra are too insensitive a 

test for observing the nonlinear dynamics of the internal wave field. 
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and horizontal gradients of velocity and buoyancy.  The last record 

presents the greatest difficulty, however a vertical profile of the 

horizontal gradient of the horizontal and vertical velocities will also 

be quite difficult.  No presently available instrument package is capable 

of acquiring these records.  Some type of acoustic instrument with a 

fairly long acoustic path to average out fine structure gradients from 

the internal wave gradients is probably required.  However, even the 

3 
strongest interactions require over 10 samples, and even if the result 

varied greatly from the theoretical prediction, that would not be very 

surprising as the assumption of "weak" nonlinearity is clearly violated 

at these small scales.  In view of the probable expense and the limited 

chance of success (any nonstationarity being fatal), a program to obtain 

this bispectrum as a limited check of weak interaction theory is not 

recommended. 

In final summary, bispectra are too insensitive a technique 

for observing the nonlinear dynamics of the internal wave field. 

Perhaps more limited and indirect measures of the energy dynamics can be 

gathered, such as correlations in energy content between portions of the 

spectrum or changes in spectral shape during times of energy input or 

dissipation.  The interpretation of such measures will probably rely 

heavily on the theoretical mechanisms and, therefore, may not be clean 

tests of the accuracy of these theoretical ideas.  It is unfortunate 

that the direct bispectral test is not possible. 
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Figure 1. Representation of display plane for bispectra. 

If the axes are linear, the third frequency is constant along a line 

of -1 slope, represented here for a bandwidth Aw . The dashed lines 

passing through the origin indicate the "fold lines" about which certain 

bispectra are symmetric. 

Figure 2.  (a) The frequency bispectrum of power contoured in 

powers of ten in m2/s . Dashed contours indicate negative values. 

Thin solid lines represent boundaries outside of which the bispectral 

level is zero because one of the frequencies is smaller than f or larger 

than N . The dashed pattern indicates the symmetry fold lines, 

(b) A three dimension representation of the top half of (a) with symmetry 

about the fold line, looking toward the origin with viewing angle I. 

The vertical axis is logarithmic.  (c) A three dimensional representation 

of the bottom half of (a) with symmetry about the fold line, looking 

toward the origin with viewing angle II. 

Figure 3. Detail on the region near the origin of Figure 2 

showing the transfers into the inertial band 1 * u/f-* 2 out of the 

band 2 * w/f * 4 . The representation is rotated 45° from the previous 

figure so that lines of constant u are horizontal. The numbers at 

the corners represent points in (ID', to") space. 

Figure 4.  Schematic representation of the wave number and frequency 

characteristics of resonant triads in the (a) parametric subharmonic 

instability (b) induced diffus ton and (c) elastic scattering interactions. 
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Figure 5.  Sections of the frequency bispectrum of power along 

(a) AA' for u/f = 20, (b) BB' for w/f = 40, and (c) CC1 for to/f = 60. 

Figure 6.  Contour plot of the squared bicoherence for the 

frequency bispectrum of power.  Only the upper octant is shown. 

Figure 7.  Contour plot of the frequency auto-bispectrum of 

3 2 
Lagrangian vertical displacements in m s .  Only the unique octant 

is shown. 

Figure 8.  Contour plot of the squared bicoherence of the 

frequency auto-bispectrum of Lagrangian vertical displacements. 

Figure 9.  Contour plot of the vertical wave number bispectrum 

of power times k^kö in m^/s^.  The actual volume under the plot gives 
3E(k3) 

the total contribution to —-rr— ^3* 

Figure 10.  Contour plot of the squared bicoherence of the 

vertical wave number bispectrum of power. 
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